+ |
ENO2 | down-regulates quantity
chemical modification
|
2-phosphonato-D-glycerate(3-) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266529 |
|
|
Homo sapiens |
|
pmid |
sentence |
29767008 |
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. Subsequent studies have shown that three types of enolase isoenzymes exist in mammals: α-enolase (ENO1) is present in almost all mature tissues; β-enolase (ENO3) exists primarily in muscle tissues; and γ-enolase (ENO2) occurs mainly in nervous and neuroendocrine tissues. All enolases are composed of two identical subunits. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |
+ |
3-phosphonato-D-glycerate(3-) | up-regulates quantity
precursor of
|
2-phosphonato-D-glycerate(3-) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266509 |
|
|
Homo sapiens |
|
pmid |
sentence |
24786789 |
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG; ref. 4). Human genome contains two PGAM genes, PGAM1 (also known as PGAM-B), which is expressed in brain and most other tissues, and PGAM2 (also known as PGAM-M), which is highly expressed in muscle. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266510 |
|
|
Homo sapiens |
|
pmid |
sentence |
24786789 |
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG; ref. 4). Human genome contains two PGAM genes, PGAM1 (also known as PGAM-B), which is expressed in brain and most other tissues, and PGAM2 (also known as PGAM-M), which is highly expressed in muscle. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266508 |
|
|
Homo sapiens |
|
pmid |
sentence |
24786789 |
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG; ref. 4). Human genome contains two PGAM genes, PGAM1 (also known as PGAM-B), which is expressed in brain and most other tissues, and PGAM2 (also known as PGAM-M), which is highly expressed in muscle. |
|
Publications: |
3 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |
+ |
PGAM2 | up-regulates quantity
chemical modification
|
2-phosphonato-D-glycerate(3-) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266515 |
|
|
Homo sapiens |
|
pmid |
sentence |
24786789 |
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG; ref. 4). Human genome contains two PGAM genes, PGAM1 (also known as PGAM-B), which is expressed in brain and most other tissues, and PGAM2 (also known as PGAM-M), which is highly expressed in muscle. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |
+ |
PGAM | up-regulates quantity
chemical modification
|
2-phosphonato-D-glycerate(3-) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266516 |
|
|
Homo sapiens |
|
pmid |
sentence |
24786789 |
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG; ref. 4). Human genome contains two PGAM genes, PGAM1 (also known as PGAM-B), which is expressed in brain and most other tissues, and PGAM2 (also known as PGAM-M), which is highly expressed in muscle. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |
+ |
2-phosphonato-D-glycerate(3-) | up-regulates quantity
precursor of
|
phosphonatoenolpyruvate |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266523 |
|
|
Homo sapiens |
|
pmid |
sentence |
29767008 |
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. Subsequent studies have shown that three types of enolase isoenzymes exist in mammals: α-enolase (ENO1) is present in almost all mature tissues; β-enolase (ENO3) exists primarily in muscle tissues; and γ-enolase (ENO2) occurs mainly in nervous and neuroendocrine tissues. All enolases are composed of two identical subunits. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266522 |
|
|
Homo sapiens |
|
pmid |
sentence |
29767008 |
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. Subsequent studies have shown that three types of enolase isoenzymes exist in mammals: α-enolase (ENO1) is present in almost all mature tissues; β-enolase (ENO3) exists primarily in muscle tissues; and γ-enolase (ENO2) occurs mainly in nervous and neuroendocrine tissues. All enolases are composed of two identical subunits. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266521 |
|
|
Homo sapiens |
|
pmid |
sentence |
29767008 |
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. Subsequent studies have shown that three types of enolase isoenzymes exist in mammals: α-enolase (ENO1) is present in almost all mature tissues; β-enolase (ENO3) exists primarily in muscle tissues; and γ-enolase (ENO2) occurs mainly in nervous and neuroendocrine tissues. All enolases are composed of two identical subunits. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266520 |
|
|
Homo sapiens |
|
pmid |
sentence |
29767008 |
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. Subsequent studies have shown that three types of enolase isoenzymes exist in mammals: α-enolase (ENO1) is present in almost all mature tissues; β-enolase (ENO3) exists primarily in muscle tissues; and γ-enolase (ENO2) occurs mainly in nervous and neuroendocrine tissues. All enolases are composed of two identical subunits. |
|
Publications: |
4 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |
+ |
ENO3 | down-regulates quantity
chemical modification
|
2-phosphonato-D-glycerate(3-) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266530 |
|
|
Homo sapiens |
|
pmid |
sentence |
29767008 |
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. Subsequent studies have shown that three types of enolase isoenzymes exist in mammals: α-enolase (ENO1) is present in almost all mature tissues; β-enolase (ENO3) exists primarily in muscle tissues; and γ-enolase (ENO2) occurs mainly in nervous and neuroendocrine tissues. All enolases are composed of two identical subunits. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |
+ |
PGAM1 | up-regulates quantity
chemical modification
|
2-phosphonato-D-glycerate(3-) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266514 |
|
|
Homo sapiens |
|
pmid |
sentence |
24786789 |
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG; ref. 4). Human genome contains two PGAM genes, PGAM1 (also known as PGAM-B), which is expressed in brain and most other tissues, and PGAM2 (also known as PGAM-M), which is highly expressed in muscle. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |
+ |
ENO1 | down-regulates quantity
chemical modification
|
2-phosphonato-D-glycerate(3-) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266528 |
|
|
Homo sapiens |
|
pmid |
sentence |
29767008 |
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. Subsequent studies have shown that three types of enolase isoenzymes exist in mammals: α-enolase (ENO1) is present in almost all mature tissues; β-enolase (ENO3) exists primarily in muscle tissues; and γ-enolase (ENO2) occurs mainly in nervous and neuroendocrine tissues. All enolases are composed of two identical subunits. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |
+ |
Enolase | down-regulates quantity
chemical modification
|
2-phosphonato-D-glycerate(3-) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-266531 |
|
|
Homo sapiens |
|
pmid |
sentence |
29767008 |
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. Subsequent studies have shown that three types of enolase isoenzymes exist in mammals: α-enolase (ENO1) is present in almost all mature tissues; β-enolase (ENO3) exists primarily in muscle tissues; and γ-enolase (ENO2) occurs mainly in nervous and neuroendocrine tissues. All enolases are composed of two identical subunits. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Glycolysis and Gluconeogenesis |