Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275701 |
|
|
|
|
pmid |
sentence |
24086043 |
GG-NER is initiated by the GG-NER specific factor XPC-RAD23B, in some cases with the help of UV-DDB (UV-damaged DNA-binding protein). TC-NER is initiated by RNA polymerase stalled at a lesion with the help of TC-NER specific factors CSA, CSB, and XAB2. Both pathways require the core NER factors to complete the excision process|The core NER dual incision reaction has been reconstituted in vitro with purified factors using XPC-RAD23B, TFIIH, XPA, RPA, XPG, and ERCC1-XPF (Aboussekhra et al. 1995; Mu et al. 1995; Araujo et al. 2000).|The core NER dual incision reaction has been reconstituted in vitro with purified factors using XPC-RAD23B, TFIIH, XPA, RPA, XPG, and ERCC1-XPF (Aboussekhra et al. 1995; Mu et al. 1995; Araujo et al. 2000). Functional studies revealed that XPC-RAD23B is the initial damage recognition factor in this system, as the presence of XPC-RAD23B is required for assembly of the other core NER factors and progression through the NER pathway both in vitro and in vivo |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275708 |
|
|
|
|
pmid |
sentence |
24086043 |
The core NER dual incision reaction has been reconstituted in vitro with purified factors using XPC-RAD23B, TFIIH, XPA, RPA, XPG, and ERCC1-XPF (Aboussekhra et al. 1995; Mu et al. 1995; Araujo et al. 2000). Functional studies revealed that XPC-RAD23B is the initial damage recognition factor in this system, as the presence of XPC-RAD23B is required for assembly of the other core NER factors and progression through the NER pathway both in vitro and in vivo |
|