+ |
GRID2 | up-regulates quantity
relocalization
|
calcium(2+) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-264952 |
|
|
Homo sapiens |
|
pmid |
sentence |
29953871 |
Ca2+ is arguably the most important second messenger in the brain because of its pivotal roles in presynaptic neurotransmitter release, postsynaptic responses, and plasticity induction. iGluRs and mGluRs can generate intracellular Ca2+ signals, albeit by different mechanisms, whose crosstalk has not been thoroughly explored (Figure 2C). iGluRs allow the influx of extracellular Ca2+ upon pore opening. This is widely acknowledged for NMDARs, which have a high Ca2+ conductance, but Ca2+ flux through AMPARs and KARs can still be substantial. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GRID2IP | up-regulates quantity
binding
|
GRID2 |
0.629 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-264475 |
|
|
Homo sapiens |
|
pmid |
sentence |
11826110 |
We identified a novel GluRdelta2-interacting protein, named Delphilin, that contains a single PDZ domain and formin homology (FH) domains FH1 and FH2 plus coiled-coil structure. Delphilin is selectively localized at the postsynaptic junction site of the parallel fiber-Purkinje cell synapse and colocalized with GluRdelta2. Thus, Delphilin is a postsynaptic scaffolding protein at the parallel fiber-Purkinje cell synapse, where it may serve to link GluRdelta2 with actin cytoskeleton and various signaling molecules. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
glutamic acid | up-regulates activity
chemical activation
|
GRID2 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-264469 |
|
|
Homo sapiens |
|
pmid |
sentence |
27586965 |
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its biological activity through a variety of receptors. Glutamate receptors (GluRs) are divided into two major classes on the basis of the mechanism by which they relay their signal: the ionotropic glutamate receptors (iGluRs), which are ligand-gated cation channels, and the metabotropic glutamate receptors (mGluRs) that are G protein-coupled receptors |
|
Publications: |
1 |
Organism: |
Homo Sapiens |