+ |
(S,S)-asenapine | up-regulates activity
chemical activation
|
HTR1B |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-258567 |
|
|
Rattus norvegicus |
|
pmid |
sentence |
8935801 |
Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter receptors in brain tissue and on membranes of recombinant cells expressing cloned human receptors and for in vivo occupancy of neurotransmitter receptors in rat and guinea-pig brain following acute treatment (2 h., s.c.). The binding affinities of the compounds for various neurotransmitter receptors were measured using membrane preparations of animal brain regions and of recombinant cells expressing cloned, mostly human receptors. Receptors, tissues and cells are indicated in Table I; results are shown in Table 4A-B. |
|
Publications: |
1 |
Organism: |
Rattus Norvegicus |
+ |
(S,S)-asenapine | up-regulates activity
chemical activation
|
HTR1A |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-258570 |
|
|
Rattus norvegicus |
|
pmid |
sentence |
8935801 |
Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter receptors in brain tissue and on membranes of recombinant cells expressing cloned human receptors and for in vivo occupancy of neurotransmitter receptors in rat and guinea-pig brain following acute treatment (2 h., s.c.). The binding affinities of the compounds for various neurotransmitter receptors were measured using membrane preparations of animal brain regions and of recombinant cells expressing cloned, mostly human receptors. Receptors, tissues and cells are indicated in Table I; results are shown in Table 4A-B. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-258848 |
|
|
Cricetulus griseus |
|
pmid |
sentence |
9760039 |
A range of serotonergic agonists and partial agonists were tested for their capacity to stimulate 5-HT1A receptor mediated GTPg binding in CHO-h5-HT1A membranes. The methoxynaphtylpiperazine ligand, S 14671,was the most potent agonist tested, with virtually full agonist activity, relative to 5-HT Table 1; Fig. 2C consistent with its exceptionally potent and efficacious actions in in vivo functional paradigms. Its analogue, S 14506 was also a highly potent and efficacious ligand (Emax90%) in agreement with previous in vivo studies ( Schreiber et al., 1994 ). (+)UH 301 exhibited partial agonist activity at 5-HT1A receptors |
|
Publications: |
2 |
Organism: |
Rattus Norvegicus, Cricetulus Griseus |
+ |
(S,S)-asenapine | up-regulates activity
chemical activation
|
HTR1E |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-258568 |
|
|
Chlorocebus aethiops |
|
pmid |
sentence |
8935801 |
Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter receptors in brain tissue and on membranes of recombinant cells expressing cloned human receptors and for in vivo occupancy of neurotransmitter receptors in rat and guinea-pig brain following acute treatment (2 h., s.c.). The binding affinities of the compounds for various neurotransmitter receptors were measured using membrane preparations of animal brain regions and of recombinant cells expressing cloned, mostly human receptors. Receptors, tissues and cells are indicated in Table I; results are shown in Table 4A-B. |
|
Publications: |
1 |
Organism: |
Chlorocebus Aethiops |
+ |
(S,S)-asenapine | up-regulates activity
chemical activation
|
HTR1D |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-258569 |
|
|
Rattus norvegicus |
|
pmid |
sentence |
8935801 |
Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter receptors in brain tissue and on membranes of recombinant cells expressing cloned human receptors and for in vivo occupancy of neurotransmitter receptors in rat and guinea-pig brain following acute treatment (2 h., s.c.). The binding affinities of the compounds for various neurotransmitter receptors were measured using membrane preparations of animal brain regions and of recombinant cells expressing cloned, mostly human receptors. Receptors, tissues and cells are indicated in Table I; results are shown in Table 4A-B. |
|
Publications: |
1 |
Organism: |
Rattus Norvegicus |
+ |
(S,S)-asenapine | down-regulates activity
chemical inhibition
|
HRH1 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-258566 |
|
|
in vitro |
|
pmid |
sentence |
8935801 |
Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter receptors in brain tissue and on membranes of recombinant cells expressing cloned human receptors and for in vivo occupancy of neurotransmitter receptors in rat and guinea-pig brain following acute treatment (2 h., s.c.). The binding affinities of the compounds for various neurotransmitter receptors were measured using membrane preparations of animal brain regions and of recombinant cells expressing cloned, mostly human receptors. Receptors, tissues and cells are indicated in Table I; results are shown in Table 4A-B. |
|
Publications: |
1 |
Organism: |
In Vitro |