+ |
PRKCB | down-regulates activity
phosphorylation
|
SLC6A9 (isoform 2) |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262922 |
Ser239 |
LIRGVKSsGKVVYFT |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262924 |
Ser625 |
PIVGSNGsSRLQDSR |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262925 |
Thr19 |
GAVPSEAtKRDQNLK |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262926 |
Thr276 |
DGIMYYLtPQWDKIL |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262927 |
Thr590 |
PALLEHRtGRYAPTI |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Publications: |
5 |
Organism: |
Sus Scrofa |
+ |
PRKCA | down-regulates activity
phosphorylation
|
SLC6A9 (isoform 2) |
0.337 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262918 |
Ser239 |
LIRGVKSsGKVVYFT |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262923 |
Ser625 |
PIVGSNGsSRLQDSR |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262919 |
Thr19 |
GAVPSEAtKRDQNLK |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262920 |
Thr276 |
DGIMYYLtPQWDKIL |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-262921 |
Thr590 |
PALLEHRtGRYAPTI |
Sus scrofa |
|
pmid |
sentence |
21864610 |
We demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. These results together suggest that conventional PKCα and/or β are responsible for the downregulation of glycine transport. We further analyzed the effect of more specific inhibitors to PKCα and PKCβ on the GlyT1 activity. As shown in Fig. 4, panels C-F, incubation of the cells with varying concentrations of the PKCβ inhibitors (referred as PKCβ inhibitor and LY333531) or the PKCα/γ (HDBBE) inhibitors did not prevent the reduction of glycine uptake triggered by PMA, suggesting that PKCα and PKCβ together regulate GlyT1 activity. |
|
Publications: |
5 |
Organism: |
Sus Scrofa |