+ |
GRIK5 | up-regulates quantity
relocalization
|
D-serine |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-268276 |
|
|
Homo sapiens |
Astroglial Cell |
pmid |
sentence |
12393813 |
Glutamate (L-Glu) released from neurons interacts with kainate-type of glutamate receptors (Kain-R) in astrocytes to stimulate release of D-serine |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GRIK5 | up-regulates
|
Excitatory_synaptic_transmission |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-264346 |
|
|
Homo sapiens |
Neuron |
pmid |
sentence |
24564659 |
Excitatory synaptic transmission in the mammalian brain is mediated primarily by the amino acid glutamate, activating two different groups of glutamate receptors: ionotropic and metabotropic. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GRIK5 | up-regulates quantity
relocalization
|
calcium(2+) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-264946 |
|
|
Homo sapiens |
|
pmid |
sentence |
29953871 |
Ca2+ is arguably the most important second messenger in the brain because of its pivotal roles in presynaptic neurotransmitter release, postsynaptic responses, and plasticity induction. iGluRs and mGluRs can generate intracellular Ca2+ signals, albeit by different mechanisms, whose crosstalk has not been thoroughly explored (Figure 2C). iGluRs allow the influx of extracellular Ca2+ upon pore opening. This is widely acknowledged for NMDARs, which have a high Ca2+ conductance, but Ca2+ flux through AMPARs and KARs can still be substantial. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
glutamic acid | up-regulates activity
chemical activation
|
GRIK5 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-264474 |
|
|
Homo sapiens |
|
pmid |
sentence |
27586965 |
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its biological activity through a variety of receptors. Glutamate receptors (GluRs) are divided into two major classes on the basis of the mechanism by which they relay their signal: the ionotropic glutamate receptors (iGluRs), which are ligand-gated cation channels, and the metabotropic glutamate receptors (mGluRs) that are G protein-coupled receptors |
|
Publications: |
1 |
Organism: |
Homo Sapiens |