+ |
CORVET tethering complex | up-regulates activity
binding
|
SNARE_complex |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-273699 |
|
|
Homo sapiens |
|
pmid |
sentence |
23351085 |
The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
VPS16 | form complex
binding
|
CORVET tethering complex |
0.872 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-273696 |
|
|
Homo sapiens |
|
pmid |
sentence |
23351085 |
The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
VPS8 | form complex
binding
|
CORVET tethering complex |
0.768 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-273693 |
|
|
Homo sapiens |
|
pmid |
sentence |
23351085 |
The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
VPS18 | form complex
binding
|
CORVET tethering complex |
0.865 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-273698 |
|
|
Homo sapiens |
|
pmid |
sentence |
23351085 |
The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
VPS33A | form complex
binding
|
CORVET tethering complex |
0.841 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-273697 |
|
|
Homo sapiens |
|
pmid |
sentence |
23351085 |
The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
TGFBRAP1 | form complex
binding
|
CORVET tethering complex |
0.766 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-273695 |
|
|
Homo sapiens |
|
pmid |
sentence |
23351085 |
The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
VPS11 | form complex
binding
|
CORVET tethering complex |
0.839 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-273694 |
|
|
Homo sapiens |
|
pmid |
sentence |
23351085 |
The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) The core subunits Vps11, Vps16 and Vps18 present the SNARE-interacting Vps33 subunit on one side and bind the Rab GTPase interaction module through Vps3/Vps8 (in CORVET) or Vps39/Vps41 (in HOPS) on the other side (Fig. 3A) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |