+ |
N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide | down-regulates
chemical inhibition
|
HDAC2 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-194548 |
|
|
Homo sapiens |
|
pmid |
sentence |
Other |
|
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide | down-regulates activity
chemical inhibition
|
HDAC1 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257975 |
|
|
in vitro |
|
pmid |
sentence |
20139990 |
Collaboratively, we synthesized and assembled a panel of structurally-diverse small-molecule HDACi 1, 2, 7-20 that comprise most of the relevant literature-reported tool compounds and pharmaceutically developed clinical candidates (Supplementary Fig 3). We next conducted a high-throughput, precise profiling of HDACi potency against all Class I and II enzymes, in a miniaturized dose-ranging format (Supplementary Table 1). |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257933 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Publications: |
2 |
Organism: |
In Vitro |
+ |
N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide | down-regulates activity
chemical inhibition
|
HDAC2 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257973 |
|
|
in vitro |
|
pmid |
sentence |
20139990 |
Collaboratively, we synthesized and assembled a panel of structurally-diverse small-molecule HDACi 1, 2, 7-20 that comprise most of the relevant literature-reported tool compounds and pharmaceutically developed clinical candidates (Supplementary Fig 3). We next conducted a high-throughput, precise profiling of HDACi potency against all Class I and II enzymes, in a miniaturized dose-ranging format (Supplementary Table 1). |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257934 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Publications: |
2 |
Organism: |
In Vitro |
+ |
N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide | down-regulates
chemical inhibition
|
HDAC3 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-194551 |
|
|
Homo sapiens |
|
pmid |
sentence |
Other |
|
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide | down-regulates activity
chemical inhibition
|
HDAC3 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257932 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257974 |
|
|
in vitro |
|
pmid |
sentence |
20139990 |
Collaboratively, we synthesized and assembled a panel of structurally-diverse small-molecule HDACi 1, 2, 7-20 that comprise most of the relevant literature-reported tool compounds and pharmaceutically developed clinical candidates (Supplementary Fig 3). We next conducted a high-throughput, precise profiling of HDACi potency against all Class I and II enzymes, in a miniaturized dose-ranging format (Supplementary Table 1). |
|
Publications: |
2 |
Organism: |
In Vitro |
+ |
N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide | down-regulates
chemical inhibition
|
HDAC1 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-194545 |
|
|
Homo sapiens |
|
pmid |
sentence |
Other |
|
|
Publications: |
1 |
Organism: |
Homo Sapiens |