+ |
KIF2B | up-regulates
|
Minus-end directed microtubule movement |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-272534 |
|
|
Homo sapiens |
|
pmid |
sentence |
19773780 |
In general, N-kinesins and C-kinesins drive microtubule plus end- and minus end-directed motilities, respectively, and M-kinesins depolymerize microtubules1,9 (Box 1).|Forty-five genes that encode kinesin superfamily proteins (also known as KIFs) have been discovered in the mouse and human genomes.|KIFs are molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs, along the microtubule system. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KIF3A | up-regulates
|
Minus-end directed microtubule movement |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-272538 |
|
|
Homo sapiens |
|
pmid |
sentence |
19773780 |
In general, N-kinesins and C-kinesins drive microtubule plus end- and minus end-directed motilities, respectively, and M-kinesins depolymerize microtubules1,9 (Box 1).|Forty-five genes that encode kinesin superfamily proteins (also known as KIFs) have been discovered in the mouse and human genomes.|KIFs are molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs, along the microtubule system. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KIF2C | up-regulates
|
Minus-end directed microtubule movement |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-272535 |
|
|
Homo sapiens |
|
pmid |
sentence |
19773780 |
In general, N-kinesins and C-kinesins drive microtubule plus end- and minus end-directed motilities, respectively, and M-kinesins depolymerize microtubules1,9 (Box 1).|Forty-five genes that encode kinesin superfamily proteins (also known as KIFs) have been discovered in the mouse and human genomes.|KIFs are molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs, along the microtubule system. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KIF2A | up-regulates
|
Minus-end directed microtubule movement |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-272533 |
|
|
Homo sapiens |
|
pmid |
sentence |
19773780 |
In general, N-kinesins and C-kinesins drive microtubule plus end- and minus end-directed motilities, respectively, and M-kinesins depolymerize microtubules1,9 (Box 1).|Forty-five genes that encode kinesin superfamily proteins (also known as KIFs) have been discovered in the mouse and human genomes.|KIFs are molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs, along the microtubule system. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KIF3B | up-regulates
|
Minus-end directed microtubule movement |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-272537 |
|
|
Homo sapiens |
|
pmid |
sentence |
19773780 |
In general, N-kinesins and C-kinesins drive microtubule plus end- and minus end-directed motilities, respectively, and M-kinesins depolymerize microtubules1,9 (Box 1).|Forty-five genes that encode kinesin superfamily proteins (also known as KIFs) have been discovered in the mouse and human genomes.|KIFs are molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs, along the microtubule system. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KIF3C | up-regulates
|
Minus-end directed microtubule movement |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-272536 |
|
|
Homo sapiens |
|
pmid |
sentence |
19773780 |
In general, N-kinesins and C-kinesins drive microtubule plus end- and minus end-directed motilities, respectively, and M-kinesins depolymerize microtubules1,9 (Box 1).|Forty-five genes that encode kinesin superfamily proteins (also known as KIFs) have been discovered in the mouse and human genomes.|KIFs are molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs, along the microtubule system. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |