+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC3 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257948 |
|
|
in vitro |
|
pmid |
sentence |
20139990 |
Collaboratively, we synthesized and assembled a panel of structurally-diverse small-molecule HDACi 1, 2, 7-20 that comprise most of the relevant literature-reported tool compounds and pharmaceutically developed clinical candidates (Supplementary Fig 3). We next conducted a high-throughput, precise profiling of HDACi potency against all Class I and II enzymes, in a miniaturized dose-ranging format (Supplementary Table 1). |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257916 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Publications: |
2 |
Organism: |
In Vitro |
+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC4 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257922 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC9 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257917 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC6 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257949 |
|
|
in vitro |
|
pmid |
sentence |
20139990 |
Collaboratively, we synthesized and assembled a panel of structurally-diverse small-molecule HDACi 1, 2, 7-20 that comprise most of the relevant literature-reported tool compounds and pharmaceutically developed clinical candidates (Supplementary Fig 3). We next conducted a high-throughput, precise profiling of HDACi potency against all Class I and II enzymes, in a miniaturized dose-ranging format (Supplementary Table 1). |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257918 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Publications: |
2 |
Organism: |
In Vitro |
+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC2 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257923 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257951 |
|
|
in vitro |
|
pmid |
sentence |
20139990 |
Collaboratively, we synthesized and assembled a panel of structurally-diverse small-molecule HDACi 1, 2, 7-20 that comprise most of the relevant literature-reported tool compounds and pharmaceutically developed clinical candidates (Supplementary Fig 3). We next conducted a high-throughput, precise profiling of HDACi potency against all Class I and II enzymes, in a miniaturized dose-ranging format (Supplementary Table 1). |
|
Publications: |
2 |
Organism: |
In Vitro |
+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC7 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257919 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC1 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257921 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257950 |
|
|
in vitro |
|
pmid |
sentence |
20139990 |
Collaboratively, we synthesized and assembled a panel of structurally-diverse small-molecule HDACi 1, 2, 7-20 that comprise most of the relevant literature-reported tool compounds and pharmaceutically developed clinical candidates (Supplementary Fig 3). We next conducted a high-throughput, precise profiling of HDACi potency against all Class I and II enzymes, in a miniaturized dose-ranging format (Supplementary Table 1). |
|
Publications: |
2 |
Organism: |
In Vitro |
+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC5 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257947 |
|
|
in vitro |
|
pmid |
sentence |
20139990 |
Collaboratively, we synthesized and assembled a panel of structurally-diverse small-molecule HDACi 1, 2, 7-20 that comprise most of the relevant literature-reported tool compounds and pharmaceutically developed clinical candidates (Supplementary Fig 3). We next conducted a high-throughput, precise profiling of HDACi potency against all Class I and II enzymes, in a miniaturized dose-ranging format (Supplementary Table 1). |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
vorinostat | down-regulates activity
chemical inhibition
|
HDAC8 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257920 |
|
|
in vitro |
|
pmid |
sentence |
17868033 |
Our findings suggest that hydroxamic acid-derived compounds such as TSA, NVP-LAQ824, panobinostat, ITF2357, vorinostat and belinostat act as potent pan-HDAC isoform inhibitors. A notable observation was the similarity between belinostat and vorinostat in the biochemical isoform assays; both compounds exhibit similar EC50 values in all but the HDAC8 assay. |
|
Publications: |
1 |
Organism: |
In Vitro |