+ |
KDM4C | down-regulates activity
demethylation
|
H2AC4 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263863 |
Lys 10 |
GRGKQGGkARAKAKT |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263862 |
Lys 37 |
RVHRLLRkGNYSERV |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
+ |
DZIP3 | up-regulates activity
monoubiquitination
|
H2AC4 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-271747 |
Lys119 |
IQAVLLPkKTESHHK |
Homo sapiens |
HEK-293 Cell |
pmid |
sentence |
18206970 |
2A-HUB catalyzes monoubiquitination of H2A at lysine 119, functioning as a combinatoric component of the repression machinery required for specific gene regulation programs. Thus, 2A-HUB mediates a selective repression of a specific set of chemokine genes in macrophages, critically modulating migratory responses to TLR activation. H2A monoubiquitination acts to prevent FACT recruitment at the transcriptional promoter region, blocking RNA polymerase II release at the early stage of elongation. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
H2AC4 | form complex
binding
|
Nucleosome_H3.1 variant |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263719 |
|
|
in vitro |
|
pmid |
sentence |
21812398 |
The elemental repeating unit of chromatin is the nucleosome core particle (NCP), which consists of 146 base pairs of DNA wrapped in 1.65 left-handed superhelical turns around the histone octamer. The histone octamer comprises two each of the core histones, H2A, H2B, H3 and H4, which form two H2A/H2B dimers and an H3/H4 tetramer, respectively, in the NCP. |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
H2AC4 | form complex
binding
|
Nucleosome_H3.3 variant |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263874 |
|
|
Homo sapiens |
|
pmid |
sentence |
15776021 |
Variant histone H3.3 is incorporated into nucleosomes by a mechanism that does not require DNA replication and has also been implicated as a potential mediator of epigenetic memory of active transcriptional states. In this study, we have used chromatin immunoprecipitation analysis to show that H3.3 is found mainly at the promoters of transcriptionally active genes. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
H2AC4 | form complex
binding
|
Nucleosome_H3.1t variant |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263724 |
|
|
in vitro |
|
pmid |
sentence |
20498094 |
A histone H3 variant, H3T, is highly expressed in the testis, suggesting that it may play an important role in the chromatin reorganization required for meiosis and/or spermatogenesis. In the present study, we found that the nucleosome containing human H3T is significantly unstable both in vitro and in vivo, as compared to the conventional nucleosome containing H3.1. |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
SLBP | up-regulates quantity by expression
translation regulation
|
H2AC4 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-265397 |
|
|
Homo sapiens |
U2-OS Cell |
pmid |
sentence |
19155325 |
Synthesis of mature histone mRNA requires only a single processing reaction: an endonucleolytic cleavage between a conserved stem-loop and a purine-rich downstream element to form the 3' end. The stem-loop binding protein (SLBP) is required for processing, and following processing, histone mRNA is transported to the cytoplasm, where SLBP participates in translation of the histone mRNA|We used radiolabeled probes generated by PCR targeting the open reading frame (ORF) to detect histones H2A, H2B, H3, H4, and H1 and used 7SK snRNA as a loading control (Fig. 2A). The abundance of histone H2A, H2B, H3, and H4 mRNAs is reduced to 37% to 70% of control levels in the SLBP knockdown cells when compared to the C2 control. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
H2AC4 | form complex
binding
|
CENP-A nucleosome |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263700 |
|
|
in vitro |
|
pmid |
sentence |
23324462 |
In vitro assembly of both yeast and human CENP-A nucleosomes yields standard octameric structures containing two copies each of CENP-A, H2A, H2B and H4 histones. Human CENP-A also produces rigidified homotypic CENP-A/H4 tetramers in vitro. |
|
Publications: |
1 |
Organism: |
In Vitro |