+ |
KDM4C | down-regulates activity
demethylation
|
H2AC4 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263863 |
Lys 10 |
GRGKQGGkARAKAKT |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263862 |
Lys 37 |
RVHRLLRkGNYSERV |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
+ |
KDM4C | down-regulates activity
demethylation
|
H3-3A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263869 |
Lys10 |
RTKQTARkSTGGKAP |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263868 |
Lys37 |
APSTGGVkKPHRYRP |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
+ |
KDM4C | down-regulates activity
demethylation
|
H3C1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263865 |
Lys10 |
RTKQTARkSTGGKAP |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263864 |
Lys37 |
APATGGVkKPHRYRP |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
+ |
KDM4C | down-regulates activity
demethylation
|
H3-4 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263867 |
Lys10 |
RTKQTARkSTGGKAP |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263866 |
Lys37 |
APATGGVkKPHRYRP |
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
+ |
EIF2AK2 | down-regulates quantity by destabilization
phosphorylation
|
KDM4C |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277497 |
Ser918 |
MFDDGSFsRDTFPED |
Homo sapiens |
SW-1573 Cell |
pmid |
sentence |
31888886 |
In the absence of Wnt3a, protein kinase R phosphorylated KDM4C at Ser918, inducing KDM4C ubiquitination and degradation. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KDM4C | up-regulates activity
binding
|
AR |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263879 |
|
|
Homo sapiens |
Prostate Cancer Cell Line |
pmid |
sentence |
29207681 |
JMJD2C was found to be co-localized with AR and LSD1 in the epithelium of prostate carcinoma and normal prostate cells. For the detailed mechanism, JMJD2C, AR and LSD1 assembled on the chromatin to remove the methyl groups from mono-, di- and trimethylated H3K9. Importantly, JMJD2C specifically removed the demethylation of the trimethyl H3K9 marks and modulated the transcriptional activity of AR. Moreover, JMJD2C cooperated with LSD1 and activated AR-mediated gene expression via decreasing H3K9me3 at the promoter of AR targeting genes KLK2 and PSA. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KDM4C | down-regulates activity
demethylation
|
Histone H3 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-265333 |
|
|
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KDM4C | up-regulates activity
binding
|
HIF1A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263873 |
|
|
Homo sapiens |
|
pmid |
sentence |
29207681 |
In hypoxia, HIF-1α dimerizes with HIF-1β to form active HIF-1 complex. JMJD2C interacts with HIF-1α and promotes the transcriptional activation of HIF-1 targeting genes via demethylating di- and trimethylated H3K9. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KDM4C | down-regulates quantity by repression
transcriptional regulation
|
H2AX |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263872 |
|
|
Homo sapiens |
|
pmid |
sentence |
29207681 |
Knockdown of JMJD2C gene led to the up-regulation of basal γ-H2AX expression. and γ-H2AX together with its phosphorylated C-terminal (Sre residues 139–140, γ-H2AX) are crucial for DNA repair |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CASP3 | down-regulates activity
cleavage
|
KDM4C |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263870 |
|
|
Homo sapiens |
|
pmid |
sentence |
29207681 |
JMJD2C as a novel substrate for caspase-3 (cysteine-aspartic acid protease-3), and cleavage of JMJD2C by caspase-3 led to inactivation of JMJD2C demethylase activity and elevation of H3K9 methylation levels. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KDM4C | up-regulates quantity by expression
transcriptional regulation
|
JAG1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-254542 |
|
|
Homo sapiens |
|
pmid |
sentence |
23698634 |
The expression of KDM4C gene was increased in spheres from colorectal cancer (CRC) cells and the knockdown (KD) of KDM4C eliminated colonosphere formation. KDM4C KD decreased the expression of JAG1 gene, and the downregulation of JAG1 gene recapitulated the impaired colonosphere formation. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
2-oxoglutarate(2-) | up-regulates activity
chemical activation
|
KDM4C |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-273474 |
|
|
|
|
pmid |
sentence |
29981745 |
Histone lysine demethylases (KDMs) are 2-oxoglutarate-dependent dioxygenases (2-OGDDs) that regulate gene expression by altering chromatin structure. |2-OG is a central intermediate of the Krebs cycle, where it is produced by isocitrate dehydrogenase (IDH) isoenzymes 2 and 3. |
|
Publications: |
1 |
+ |
Caspase 3 complex | down-regulates activity
cleavage
|
KDM4C |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263871 |
|
|
Homo sapiens |
|
pmid |
sentence |
29207681 |
JMJD2C as a novel substrate for caspase-3 (cysteine-aspartic acid protease-3), and cleavage of JMJD2C by caspase-3 led to inactivation of JMJD2C demethylase activity and elevation of H3K9 methylation levels. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KDM4C | down-regulates activity
demethylation
|
Histone H2A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-265315 |
|
|
Homo sapiens |
|
pmid |
sentence |
29207681 |
As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes.JMJD2C has been proved to be a demethylase for H3K9 methylation, in the manner of catalyzing the demethylation of H3K9me3/me2 (the known repressive markers of gene regulation), a histone mark found in heterochromatin associated with euchromatic transcriptional silencing and heterochromatin formation |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HIF1A | up-regulates quantity by expression
transcriptional regulation
|
KDM4C |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-271570 |
|
|
Homo sapiens |
|
pmid |
sentence |
32938217 |
To this end, we confirm that KDM3A, KDM4B, KDM4C, KDM5B, KDM5C, and KDM62 are direct targets of HIF-1a while extent the list of known targets to KDM2A, KDM2B, KDM4D, KDM5A, and KDM6A. The results demonstrated that majority of the KDMs were similarly induced (KDM2A, KDM2B, KDM3A, KDM4B, KDM4C, KDM4D, KDM5A, KDM5B, KDM5C, KDM6B, and KDM7A) or repressed (KDM NO66 and KDM1A) by both HIF-1a and HIF-2a. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KDM4C | up-regulates activity
binding
|
KDM1A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-263880 |
|
|
Homo sapiens |
Prostate Cancer Cell Line |
pmid |
sentence |
29207681 |
JMJD2C was found to be co-localized with AR and LSD1 in the epithelium of prostate carcinoma and normal prostate cells. For the detailed mechanism, JMJD2C, AR and LSD1 assembled on the chromatin to remove the methyl groups from mono-, di- and trimethylated H3K9. Importantly, JMJD2C specifically removed the demethylation of the trimethyl H3K9 marks and modulated the transcriptional activity of AR. Moreover, JMJD2C cooperated with LSD1 and activated AR-mediated gene expression via decreasing H3K9me3 at the promoter of AR targeting genes KLK2 and PSA. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
EPAS1 | up-regulates quantity by expression
transcriptional regulation
|
KDM4C |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-271585 |
|
|
Homo sapiens |
|
pmid |
sentence |
32938217 |
To this end, we confirm that KDM3A, KDM4B, KDM4C, KDM5B, KDM5C, and KDM62 are direct targets of HIF-1a while extent the list of known targets to KDM2A, KDM2B, KDM4D, KDM5A, and KDM6A. The results demonstrated that majority of the KDMs were similarly induced (KDM2A, KDM2B, KDM3A, KDM4B, KDM4C, KDM4D, KDM5A, KDM5B, KDM5C, KDM6B, and KDM7A) or repressed (KDM NO66 and KDM1A) by both HIF-1a and HIF-2a. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |