+ |
MLL3 complex | down-regulates activity
methylation
|
H3-3A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-268811 |
Lys5 |
kQTARKST |
Homo sapiens |
|
pmid |
sentence |
34156443 |
MLL3/KMT2C and MLL4/KMT2D are two paralogous histone modifiers that belong to the SET1/MLL (also named COMPASS) family of lysine methyltransferases and play critical roles in enhancer-regulated gene activation. MLL3 and MLL4 form identical multi-protein complexes for modifying mono-methylation of histone H3 lysine 4 (H3K4) at enhancers, which together with the p300/CBP-mediated H3K27 acetylation can generate an active enhancer landscape for long-range target gene activation. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MLL3 complex | down-regulates activity
methylation
|
H3-4 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-268812 |
Lys5 |
kQTARKST |
Homo sapiens |
|
pmid |
sentence |
34156443 |
MLL3/KMT2C and MLL4/KMT2D are two paralogous histone modifiers that belong to the SET1/MLL (also named COMPASS) family of lysine methyltransferases and play critical roles in enhancer-regulated gene activation. MLL3 and MLL4 form identical multi-protein complexes for modifying mono-methylation of histone H3 lysine 4 (H3K4) at enhancers, which together with the p300/CBP-mediated H3K27 acetylation can generate an active enhancer landscape for long-range target gene activation. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MLL3 complex | down-regulates activity
methylation
|
H3C1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-268810 |
Lys5 |
kQTARKST |
Homo sapiens |
|
pmid |
sentence |
34156443 |
MLL3/KMT2C and MLL4/KMT2D are two paralogous histone modifiers that belong to the SET1/MLL (also named COMPASS) family of lysine methyltransferases and play critical roles in enhancer-regulated gene activation. MLL3 and MLL4 form identical multi-protein complexes for modifying mono-methylation of histone H3 lysine 4 (H3K4) at enhancers, which together with the p300/CBP-mediated H3K27 acetylation can generate an active enhancer landscape for long-range target gene activation. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
KMT2C | form complex
binding
|
MLL3 complex |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-268809 |
|
|
Homo sapiens |
|
pmid |
sentence |
34156443 |
MLL3/KMT2C and MLL4/KMT2D are two paralogous histone modifiers that belong to the SET1/MLL (also named COMPASS) family of lysine methyltransferases and play critical roles in enhancer-regulated gene activation. MLL3 and MLL4 form identical multi-protein complexes for modifying mono-methylation of histone H3 lysine 4 (H3K4) at enhancers, which together with the p300/CBP-mediated H3K27 acetylation can generate an active enhancer landscape for long-range target gene activation. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MLL/SET subcomplex | form complex
binding
|
MLL3 complex |
0.798 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-268808 |
|
|
Homo sapiens |
|
pmid |
sentence |
34156443 |
MLL3/KMT2C and MLL4/KMT2D are two paralogous histone modifiers that belong to the SET1/MLL (also named COMPASS) family of lysine methyltransferases and play critical roles in enhancer-regulated gene activation. MLL3 and MLL4 form identical multi-protein complexes for modifying mono-methylation of histone H3 lysine 4 (H3K4) at enhancers, which together with the p300/CBP-mediated H3K27 acetylation can generate an active enhancer landscape for long-range target gene activation. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |