+ |
CAMK2D | up-regulates activity
phosphorylation
|
SCN5A |
0.48 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275782 |
Ser1934 |
LFRQQAGsGLSEEDA |
|
|
pmid |
sentence |
28882890 |
C-terminal phosphorylation of NaV1.5 impairs FGF13-dependent regulation of channel inactivation| Of 19 native NaV1.5 phosphorylation sites identified, two C-terminal phosphoserines at positions 1938 and 1989 showed increased phosphorylation in the CaMKIIδc-Tg compared with the WT ventricles. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275783 |
Ser1985 |
DSVTRATsDNLQVRG |
|
|
pmid |
sentence |
28882890 |
C-terminal phosphorylation of NaV1.5 impairs FGF13-dependent regulation of channel inactivation| Of 19 native NaV1.5 phosphorylation sites identified, two C-terminal phosphoserines at positions 1938 and 1989 showed increased phosphorylation in the CaMKIIδc-Tg compared with the WT ventricles. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275776 |
Ser516 |
LSLTRGLsRTSMKPR |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275777 |
Ser571 |
PWPLRRTsAQGQPSP |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275778 |
Thr594 |
LHGKKNStVDCNGVV |
Homo sapiens |
|
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Publications: |
5 |
Organism: |
, Homo Sapiens |
+ |
PKA | up-regulates activity
phosphorylation
|
SCN5A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275765 |
Ser36 |
AEKQARGsTTLQESR |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275991 |
Ser525 |
TSMKPRSsRGSIFTF |
in vitro |
|
pmid |
sentence |
12242273 |
These results demonstrate that the effect of PKA stimulation to increase cardiac INa requires at least 2 processes: phosphorylation of consensus sites in the I-II interdomain linker, and one or more additional molecular events mediated by the kinase, that could include phosphorylation of other substrates/proteins. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275766 |
Ser525 |
TSMKPRSsRGSIFTF |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275764 |
Ser528 |
KPRSSRGsIFTFRRR |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275992 |
Ser528 |
KPRSSRGsIFTFRRR |
in vitro |
|
pmid |
sentence |
12242273 |
These results demonstrate that the effect of PKA stimulation to increase cardiac INa requires at least 2 processes: phosphorylation of consensus sites in the I-II interdomain linker, and one or more additional molecular events mediated by the kinase, that could include phosphorylation of other substrates/proteins. |
|
Publications: |
5 |
Organism: |
Homo Sapiens, In Vitro |
+ |
SGK3 | up-regulates activity
phosphorylation
|
SCN5A |
0.279 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275767 |
Ser484 |
KRRKRMSsGTEECGE |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275768 |
Ser664 |
GARQRALsAVSVLTS |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
+ |
CAMK2D | down-regulates
phosphorylation
|
SCN5A |
0.48 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-197058 |
Ser516 |
LSLTRGLsRTSMKPR |
Homo sapiens |
|
pmid |
sentence |
22514276 |
A stable interaction between ?(C)-camkii and the intracellular loop between domains 1 and 2 of na(v)1.5 was observed. This region was also phosphorylated by ?(C)-camkii, specifically at the ser-516 and thr-594 sites.Wild-type (wt) and phosphomutant hna(v)1.5 were co-expressed with gfp-?(C)-camkii in hek293 cells, and i(na) was recorded. As observed in myocytes, camkii shifted wt i(na) availability to a more negative membrane potential and enhanced accumulation of i(na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable ala residues. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-197067 |
Thr594 |
LHGKKNStVDCNGVV |
Homo sapiens |
|
pmid |
sentence |
22514276 |
A stable interaction between ?(C)-camkii and the intracellular loop between domains 1 and 2 of na(v)1.5 was observed. This region was also phosphorylated by ?(C)-camkii, specifically at the ser-516 and thr-594 sites.Wild-type (wt) and phosphomutant hna(v)1.5 were co-expressed with gfp-?(C)-camkii in hek293 cells, and i(na) was recorded. As observed in myocytes, camkii shifted wt i(na) availability to a more negative membrane potential and enhanced accumulation of i(na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable ala residues. |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
+ |
CAMK2A | up-regulates activity
phosphorylation
|
SCN5A |
0.383 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275770 |
Ser516 |
LSLTRGLsRTSMKPR |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275771 |
Ser571 |
PWPLRRTsAQGQPSP |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275772 |
Thr594 |
LHGKKNStVDCNGVV |
Homo sapiens |
|
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Publications: |
3 |
Organism: |
Homo Sapiens |
+ |
CAMK2B | up-regulates activity
phosphorylation
|
SCN5A |
0.394 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275773 |
Ser516 |
LSLTRGLsRTSMKPR |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275774 |
Ser571 |
PWPLRRTsAQGQPSP |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275775 |
Thr594 |
LHGKKNStVDCNGVV |
Homo sapiens |
|
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Publications: |
3 |
Organism: |
Homo Sapiens |
+ |
CAMK2G | up-regulates activity
phosphorylation
|
SCN5A |
0.295 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275779 |
Ser516 |
LSLTRGLsRTSMKPR |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275780 |
Ser571 |
PWPLRRTsAQGQPSP |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275781 |
Thr594 |
LHGKKNStVDCNGVV |
Homo sapiens |
|
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Publications: |
3 |
Organism: |
Homo Sapiens |
+ |
PRKAA1 | down-regulates quantity by destabilization
phosphorylation
|
SCN5A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277432 |
Thr101 |
IVLNKGKtIFRFSAT |
Homo sapiens |
HEK-293T Cell |
pmid |
sentence |
30759345 |
AMPK was found to phosphorylate Nav1.5 at threonine (T) 101, which then regulates the interaction between Nav1.5 and the autophagic adaptor protein, microtubule-associated protein 1 light chain 3 (LC3), by exposing the LC3-interacting region adjacent to T101 in Nav1.5. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
AMPK | up-regulates activity
phosphorylation
|
SCN5A |
0.325 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-275769 |
Thr101 |
IVLNKGKtIFRFSAT |
Homo sapiens |
Neuron |
pmid |
sentence |
33410863 |
Among the sites identified, only six were previously suggested to be the targets for specific kinases using in silico and/or in vitro analyses: S36 and S525 were attributed to the regulation by PKA; S484 and S664 were assigned to the serum- and glucocorticoid-inducible kinase 3 (SGK3); and S516 and S571 were ascribed to CaMKII (reviewed in Marionneau and Abriel, 2015). In marked contrast, several previously described phosphorylation sites were not detected in the present study, including the PKA-dependent S528, the CaMKII-associated T594, the PKC-dependent S1506, the adenosine monophosphate–activated protein kinase (AMPK)–dependent T101 (Liu et al., 2019), and the six Fyn-dependent tyrosines (Ahern et al., 2005; Iqbal et al., 2018).|The simplest interpretation of these findings is that these three phosphorylation clusters, at positions S457-S460, S483-T486, and S664-S671, are likely involved in regulating the basal and/or gating properties of native cardiac NaV1.5 channels. Conversely, the other phosphorylation sites, with lower stoichiometries, may play spatially or temporally distinct roles in the physiological or more pathophysiological regulation of channel expression or gating. | Remarkably, this MS analysis also revealed that the vast majority of identified phosphorylation sites (at least 26) are clustered, suggesting concomitant phosphorylation and roles in regulating channel expression and/or function. Unexpectedly, however, except for S664, S667, and S671, no apparent effects of phosphomimetic or phosphosilent mutations were observed on heterologously expressed (in HEK-293 cells) NaV1.5 |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
FYN | down-regulates
phosphorylation
|
SCN5A |
0.298 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-135600 |
Tyr1495 |
TEEQKKYyNAMKKLG |
Homo sapiens |
|
pmid |
sentence |
15831816 |
This study addresses the effects of the src family tyrosine kinase fyn on na(v)1.5 cardiac sodium channels. Sodium currents were acquired by whole cell recording on hek-293 cells transiently expressing na(v)1.5. Acute treatment of cells with insulin caused a depolarizing shift in steady-state inactivation, an effect eliminated by the src-specific tyrosine kinase inhibitor pp2 we provide evidence that this linker is a substrate for fyn in vitro, and that y1495 is a preferred phosphorylation site. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
ESR1 | down-regulates quantity by repression
transcriptional regulation
|
SCN5A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253467 |
|
|
Homo sapiens |
MCF-7 Cell |
pmid |
sentence |
24493753 |
The effects of β-oestradiol (E2), the biologically active form of oestrogen, are classically mediated by two types of oestrogen receptor (ER): ERα and ERβ. E2 has both non-genomic and genomic effects upon VGSC expression/activity; and (ii) transcriptionally, E2 (via ERα) downregulates functional VGSC (nNav1.5) expression in BCa cells. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Tissue: |
Spinal Ganglion |
+ |
SCN5A | up-regulates
|
Action_potential |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253447 |
|
|
Homo sapiens |
|
pmid |
sentence |
26043074 |
The expression of voltage-gated sodium channels (NaVs) is a key feature for initiation and conduction of action potentials in excitable tissues and cells such as cardiac and skeletal muscle and neurons. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
NEDD4L | down-regulates quantity by destabilization
ubiquitination
|
SCN5A |
0.476 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253456 |
|
|
Mus musculus |
Neuron |
pmid |
sentence |
23778145 |
The control of Nav density at the cell membrane is crucial to ensuring normal neuronal excitability. Navs are subject to posttranslational modifications that may influence their cell membrane availability. Ubiquitylation is a key process that orchestrates the internalization and subsequent degradation or recycling of Navs. This is accomplished by ubiquitin protein ligases, such as NEDD4-2 (neuronal precursor cell expressed developmentally downregulated-4 type 2). |
|
Publications: |
1 |
Organism: |
Mus Musculus |
+ |
TNF | up-regulates activity
|
SCN5A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253486 |
|
|
Mus musculus |
Cerebral Cortical Neuron |
pmid |
sentence |
26112872 |
TNF-α increases Na(+) currents by accelerating the channel activation as well as increasing the expression of VGSCs in a mechanism dependent upon NF-κB and p38 MAPK signal pathways in CNS neurons. TNF-α increased Na(+) currents by accelerating the activation of VGSCs. The threshold for action potential (AP) was decreased and firing rate were increased. VGSCs were up-regulated at both the mRNA and protein levels. |
|
Publications: |
1 |
Organism: |
Mus Musculus |
+ |
IL10 | down-regulates quantity by repression
transcriptional regulation
|
SCN5A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253496 |
|
|
Rattus norvegicus |
Neuron |
pmid |
sentence |
23357618 |
Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Consistent with the electrophysiological results, real-time PCR and western blot revealed that IL-10 (200 pg/ml) down-regulated VGSCs in both mRNA and protein levels and reversed the up-regulation of VGSCs by TNF-α. |
|
Publications: |
1 |
Organism: |
Rattus Norvegicus |
Tissue: |
Spinal Ganglion |
+ |
FGF12 | down-regulates activity
binding
|
SCN5A |
0.596 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253416 |
|
|
Homo sapiens |
|
pmid |
sentence |
20679355 |
Sodium channel fast inactivation is modulated by alpha subunit interaction with a family of cytoplasmic proteins termed fibroblast growth factor homologous factors (FHFs). In this paper, we report that all A-type FHFs exert rapid onset long-term inactivation on Nav1.6 and other sodium channels. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Tissue: |
Cardiac Muscle |
+ |
lidocaine | down-regulates activity
chemical inhibition
|
SCN5A |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-258499 |
|
|
Xenopus laevis |
Oocyte |
pmid |
sentence |
8786356 |
Surprisingly, hH1-beta 1 Na channels were threefold more sensitive to rested-state block by lidocaine (402 +/- 36 microM, n = 4-22) than were mu 1-beta 1 Na channels (1,168 +/- 34 microM, n = 7-19). |
|
Publications: |
1 |
Organism: |
Xenopus Laevis |
+ |
FGF11 | down-regulates activity
binding
|
SCN5A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253418 |
|
|
Homo sapiens |
|
pmid |
sentence |
20679355 |
Sodium channel fast inactivation is modulated by alpha subunit interaction with a family of cytoplasmic proteins termed fibroblast growth factor homologous factors (FHFs). In this paper, we report that all A-type FHFs exert rapid onset long-term inactivation on Nav1.6 and other sodium channels. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Tissue: |
Cardiac Muscle |
+ |
FGF13 | down-regulates activity
binding
|
SCN5A |
0.42 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253415 |
|
|
Homo sapiens |
|
pmid |
sentence |
20679355 |
Sodium channel fast inactivation is modulated by alpha subunit interaction with a family of cytoplasmic proteins termed fibroblast growth factor homologous factors (FHFs). In this paper, we report that all A-type FHFs exert rapid onset long-term inactivation on Nav1.6 and other sodium channels. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Tissue: |
Cardiac Muscle |
+ |
TNF | up-regulates quantity by expression
transcriptional regulation
|
SCN5A |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253477 |
|
|
Mus musculus |
Cerebral Cortical Neuron |
pmid |
sentence |
26112872 |
TNF-α increases Na(+) currents by accelerating the channel activation as well as increasing the expression of VGSCs in a mechanism dependent upon NF-κB and p38 MAPK signal pathways in CNS neurons. TNF-α increased Na(+) currents by accelerating the activation of VGSCs. The threshold for action potential (AP) was decreased and firing rate were increased. VGSCs were up-regulated at both the mRNA and protein levels. |
|
Publications: |
1 |
Organism: |
Mus Musculus |
+ |
FGF14 | down-regulates activity
binding
|
SCN5A |
0.286 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253417 |
|
|
Homo sapiens |
|
pmid |
sentence |
20679355 |
Sodium channel fast inactivation is modulated by alpha subunit interaction with a family of cytoplasmic proteins termed fibroblast growth factor homologous factors (FHFs). In this paper, we report that all A-type FHFs exert rapid onset long-term inactivation on Nav1.6 and other sodium channels. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Tissue: |
Cardiac Muscle |
+ |
SCN5A | up-regulates quantity
relocalization
|
sodium(1+) |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-253401 |
|
|
Homo sapiens |
|
pmid |
sentence |
27262167 |
Voltage-gated Na1 channels (NaV channels) drive the rapid upstroke of action potentials in cardiac and skeletal muscle and in most neurons, thereby serving as initiators of electrical activity in excitable tissue. Nine genes encode a family of homologous of NaV channel pore-forming a subunits. While channels are open, Na1 ions flux through the central pore down an electrochemical gradient, further depolarizing the membrane and triggering an action potential. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |