+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
DPPA4 |
0.471 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269243 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
TDGF1 |
0.519 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269244 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
POU5F1 | form complex
binding
|
SOX17/POU5F1 |
0.628 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269221 |
|
|
|
|
pmid |
sentence |
23474895 |
Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm|We show that Sox17 partners with Oct4 and binds to a unique ‘compressed' Sox/Oct motif that earmarks endodermal genes. This is in contrast to the pluripotent state where Oct4 selectively partners with Sox2 at ‘canonical' binding sites. |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
PRDM14 |
0.513 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269242 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
OTX2 |
0.44 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269248 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
TRIM71 |
0.289 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269247 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17 | form complex
binding
|
SOX17/POU5F1 |
0.628 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269220 |
|
|
|
|
pmid |
sentence |
23474895 |
Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm|We show that Sox17 partners with Oct4 and binds to a unique ‘compressed' Sox/Oct motif that earmarks endodermal genes. This is in contrast to the pluripotent state where Oct4 selectively partners with Sox2 at ‘canonical' binding sites. |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
IGF1 |
0.341 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269258 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
BMP7 |
0.318 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269260 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
TFAP2C |
0.383 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269256 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
PRDM1 |
0.371 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269255 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
NANOG |
0.623 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269245 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
MYCN |
0.367 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269257 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
PIM2 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269249 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
LIN28A |
0.53 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269246 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |
+ |
SOX17/POU5F1 | up-regulates quantity by expression
transcriptional regulation
|
NANOS3 |
0.358 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269259 |
|
|
|
|
pmid |
sentence |
31583686 |
Both SOX2 and SOX17 are able to partner with OCT4 and, as a consequence, recognize and bind specific binding motifs.6, 7 In human and mouse ESCs, SOX2/OCT4 bind to canonical motifs (CTTTGTCATGCAAAT-like), which are composite SOX (CATTGTC-like) and OCT (ATGCAAAT-like) motifs|This way SOX17 and SOX2 regulate a common set of pluripotency and GC-related genes (PRDM14, DPPA4, TDGF1, NANOG, LIN28A, TRIM71, OTX2, PIM2) (Fig. 6). Additionally, in TCam-2 cells SOX17 binds to compressed motifs or SOX motifs (not bound by SOX2 in ECs), thereby regulating the PGC specifiers PRDM1 and TFAP2C, the GC-related genes NANOS3 and BMP7 and the cancer-related genes MYC and IGF1 (Fig. 6). In 2102EP cells, SOX2 further binds canonical elements or SOX motifs (not bound by SOX17 in TCam-2), regulating additional pluripotency genes (GDF3, LEFTY2, SALL4, SOX2 and POU5F1) (Fig. 6). |
|
Publications: |
1 |