+ |
PDGFRB | up-regulates activity
phosphorylation
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277233 |
Tyr154 |
QLNDSAAyYLNDLDR |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277232 |
Tyr155 |
LNDSAAYyLNDLDRI |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277234 |
Tyr320 |
RKDTKEIyTHFTCAT |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Publications: |
3 |
Organism: |
In Vitro |
+ |
FLT1 | up-regulates activity
phosphorylation
|
GNAI1 |
0.26 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277230 |
Tyr154 |
QLNDSAAyYLNDLDR |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277229 |
Tyr155 |
LNDSAAYyLNDLDRI |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277231 |
Tyr320 |
RKDTKEIyTHFTCAT |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Publications: |
3 |
Organism: |
In Vitro |
+ |
EGFR | up-regulates activity
phosphorylation
|
GNAI1 |
0.44 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277227 |
Tyr154 |
QLNDSAAyYLNDLDR |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277226 |
Tyr155 |
LNDSAAYyLNDLDRI |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-277228 |
Tyr320 |
RKDTKEIyTHFTCAT |
in vitro |
|
pmid |
sentence |
33139573 |
RTKs directly phosphorylate Gαi on Y154, 155, and Y320. |
|
Publications: |
3 |
Organism: |
In Vitro |
+ |
CHRM5 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256730 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
PTGER3 | up-regulates activity
binding
|
GNAI1 |
0.427 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256716 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
LPAR6 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256725 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
FFAR3 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256678 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
LTB4R | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256691 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPR183 | up-regulates activity
binding
|
GNAI1 |
0.393 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256715 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
DRD2 | up-regulates activity
binding
|
GNAI1 |
0.46 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256701 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Oxytocin signaling |
+ |
DRD1 | up-regulates activity
binding
|
GNAI1 |
0.288 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257068 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
BDKRB1 | up-regulates activity
binding
|
GNAI1 |
0.409 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257036 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CNR1 | up-regulates activity
binding
|
GNAI1 |
0.52 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256724 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
DRD3 | up-regulates activity
binding
|
GNAI1 |
0.527 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256702 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MCHR1 | up-regulates activity
binding
|
GNAI1 |
0.412 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257034 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
NMUR2 | up-regulates activity
binding
|
GNAI1 |
0.409 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256731 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPR65 | up-regulates activity
binding
|
GNAI1 |
0.274 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-272502 |
|
|
Homo sapiens |
|
pmid |
sentence |
27287411 |
GPR65 is playing a critical role in phagocytic cells that require high levels of V-ATPase activity to maintain phagosomal and lysosomal pH, and this activity aids in the direct clearance of enteric pathogens. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | down-regulates
binding
|
PLD2 |
0.312 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-48256 |
|
|
Homo sapiens |
|
pmid |
sentence |
9148895 |
The results of this study suggest that membrane phospholipase d activity can be negatively regulated via gi |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPCR | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-255006 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Neurotransmitters release |
+ |
GNRHR | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257064 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GALR1 | up-regulates activity
binding
|
GNAI1 |
0.448 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256687 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
NPFFR1 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256708 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
ADRA2C | up-regulates activity
binding
|
GNAI1 |
0.457 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256699 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
F2R | up-regulates
binding
|
GNAI1 |
0.376 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-196009 |
|
|
Homo sapiens |
|
pmid |
sentence |
22318735 |
Upon proteolysis, the newly formed n terminus acts as a tethered ligand that activates the receptor and initiates signaling cascades through multiple g proteins (galfaq, galfai, and galfa12/13). |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
ADORA2B | up-regulates activity
binding
|
GNAI1 |
0.296 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257039 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
LPAR2 | up-regulates
binding
|
GNAI1 |
0.61 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-84559 |
|
|
Homo sapiens |
|
pmid |
sentence |
11093753 |
Lysophosphatidic acid (lpa), a major g protein coupled receptor (gpcr)-activating ligand present in serum, elicits growth factor like responses by stimulating specific gpcrs coupled to heterotrimeric g proteins such as g(i), g(q), and g12/13. lpa2 also can couple to the gi/o, g12/13, and gqfamilies. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-135840 |
|
|
Homo sapiens |
|
pmid |
sentence |
15856019 |
Lysophosphatidic acid (lpa), a major g protein coupled receptor (gpcr)-activating ligand present in serum, elicits growth factor like responses by stimulating specific gpcrs coupled to heterotrimeric g proteins such as g(i), g(q), and g12/13. Lpa2also can couple to the gi/o, g12/13, and gqfamilies. |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
+ |
OXGR1 | up-regulates activity
binding
|
GNAI1 |
0.357 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257042 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
OPRD1 | up-regulates activity
binding
|
GNAI1 |
0.522 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256683 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
OPRL1 | up-regulates activity
binding
|
GNAI1 |
0.439 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256722 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
SSTR2 | up-regulates activity
binding
|
GNAI1 |
0.563 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256684 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
EDNRA | up-regulates activity
binding
|
GNAI1 |
0.392 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257052 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CYSLTR1 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256740 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
S1PR5 | up-regulates activity
binding
|
GNAI1 |
0.468 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256676 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
ADRA2B | up-regulates activity
binding
|
GNAI1 |
0.439 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256714 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
P2RY10 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256726 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
ADORA1 | up-regulates activity
binding
|
GNAI1 |
0.434 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256697 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
NPFFR2 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256709 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR1A | up-regulates activity
binding
|
GNAI1 |
0.472 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256693 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GALR2 | up-regulates activity
binding
|
GNAI1 |
0.425 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256741 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | down-regulates activity
binding
|
ADCY1 |
0.533 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256498 |
|
|
Homo sapiens |
|
pmid |
sentence |
19703466 |
GTP-bound, active WT Gαi1 acts to inhibit AC, resulting in a decreased concentration of intracellular cAMP. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256532 |
|
|
Homo sapiens |
|
pmid |
sentence |
15922020 |
Activation of receptors coupled to inhibitory G proteins (Galpha i/o) has opposing consequences for cyclic AMP accumulation and the activity of cyclic AMP-dependent protein kinase, depending on the duration of stimulation. Acute activation inhibits the activity of adenylate cyclase, thereby attenuating cyclic AMP accumulation; in contrast, persistent activation of Galpha i/o-coupled receptors produces a paradoxical enhancement of adenylate cyclase activity, thus increasing cyclic AMP accumulation when the action of the inhibitory receptor is terminated. |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
Pathways: | Neurotransmitters release |
+ |
HRH3 | up-regulates activity
binding
|
GNAI1 |
0.412 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256689 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPR34 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256688 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
FFAR1 | up-regulates activity
binding
|
GNAI1 |
0.311 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257071 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
SMO | up-regulates
binding
|
GNAI1 |
0.496 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-148487 |
|
|
Mus musculus |
MEF Cell |
pmid |
sentence |
16885213 |
We found that Smo, by virtue of what appears to be constitutive activity, activates all members of the G(i) family but does not activate members of the G(s), G(q), and G(12) families. The activation is suppressed by cyclopamine and other inhibitors of Hedgehog signaling and is enhanced by the Smo agonist purmorphamine. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-199159 |
|
|
Homo sapiens |
|
pmid |
sentence |
23074268 |
Consistent with its predicted topology, smo couples to a specific family of inhibitory g protein (gis) to regulate hh signaling. |
|
Publications: |
2 |
Organism: |
Mus Musculus, Homo Sapiens |
+ |
LPAR2 | up-regulates activity
binding
|
GNAI1 |
0.61 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257056 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | down-regulates
|
Microtubule_polimerization |
0.7 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256523 |
|
|
in vitro |
|
pmid |
sentence |
10224115 |
G protein alpha subunits Gi1alpha, Gsalpha, and Goalpha are shown to activate the GTPase activity of tubulin, inhibit microtubule assembly, and accelerate microtubule dynamics. |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
HCRTR2 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256729 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
BDKRB2 | up-regulates activity
binding
|
GNAI1 |
0.357 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256695 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
LPAR | up-regulates
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-269964 |
|
|
Homo sapiens |
|
pmid |
sentence |
12393875 |
We conclude that lpa(1) receptors couple to a g(i)-phosphoinositide 3-kinase-tiam1 pathway to activate rac. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GHSR | up-regulates activity
binding
|
GNAI1 |
0.357 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257054 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
UTS2R | up-regulates activity
binding
|
GNAI1 |
0.268 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257051 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
SSTR4 | up-regulates activity
binding
|
GNAI1 |
0.482 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256680 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
EDNRB | up-regulates activity
binding
|
GNAI1 |
0.425 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257053 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HCRTR1 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256733 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MLNR | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256737 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
FFAR4 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257045 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
PTGER4 | up-regulates activity
binding
|
GNAI1 |
0.318 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257032 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CCKAR | up-regulates activity
binding
|
GNAI1 |
0.254 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257035 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPSM3 | down-regulates activity
binding
|
GNAI1 |
0.468 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-264864 |
|
|
Homo sapiens |
HEK-293 Cell |
pmid |
sentence |
22843681 |
GPSM3 acts through its two GoLoco motifs to exert GDP dissociation inhibitor activity over Galpha(i) subunits|interactions between GPSM3 and Galphai1 or Gbeta1 (20) was assayed by BRET. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
SSTR5 | up-regulates activity
binding
|
GNAI1 |
0.474 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256690 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CRHR1 | up-regulates activity
binding
|
GNAI1 |
0.432 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-268618 |
|
|
|
|
pmid |
sentence |
22869609 |
Previous studies have indicated that CRHR could couple to multiple Galpha proteins including Gs, Gi, and Gq/11 and then go on to induce changes in AC activity and activation of PLC-beta3 |
|
Publications: |
1 |
+ |
S1PR1 | up-regulates activity
binding
|
GNAI1 |
0.482 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256713 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
TACR3 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257066 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
ADORA2A | up-regulates activity
binding
|
GNAI1 |
0.276 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257038 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
LPAR1 | up-regulates activity
binding
|
GNAI1 |
0.537 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256696 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
SSTR1 | up-regulates activity
binding
|
GNAI1 |
0.503 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256679 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
PRLHR | up-regulates activity
binding
|
GNAI1 |
0.281 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256694 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
DRD4 | up-regulates activity
binding
|
GNAI1 |
0.44 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256703 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GTP | up-regulates
chemical activation
|
GNAI1 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-88238 |
|
|
Homo sapiens |
|
pmid |
sentence |
12040175 |
Agonist binding triggers a conformational change in the receptor, which catalyses the dissociation of gdp from the alfa subunit followed by gtp-binding to galfa and the dissociation of galfa from gbetagamma subunits1. The alfa subunits of g proteins are divided into four subfamilies: galfas, galfai, galfaq and galfa12, and a single gpcr can couple to either one or more families of galfa proteins. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPR17 | up-regulates activity
binding
|
GNAI1 |
0.385 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256692 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HRH1 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257050 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
F2RL2 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257033 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR1E | up-regulates activity
binding
|
GNAI1 |
0.423 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256705 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
F2RL3 | up-regulates activity
binding
|
GNAI1 |
0.357 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257044 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
LPAR3 | up-regulates
binding
|
GNAI1 |
0.434 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-84562 |
|
|
Homo sapiens |
|
pmid |
sentence |
11093753 |
Lpa3 can couple to gi/o |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | down-regulates
|
3',5'-cyclic AMP |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-255008 |
|
|
Homo sapiens |
|
pmid |
sentence |
23994464 |
The G alpha I subunit inhibits adenylyl cyclase activity and therefore reduces cytoplasmic cAMP levels |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Neurotransmitters release, Oxytocin signaling |
+ |
CHRM4 | up-regulates activity
binding
|
GNAI1 |
0.43 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256686 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
LPAR1 | up-regulates
binding
|
GNAI1 |
0.537 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-94635 |
|
|
Homo sapiens |
|
pmid |
sentence |
12393875 |
We conclude that lpa(1) receptors couple to a g(i)-phosphoinositide 3-kinase-tiam1 pathway to activate rac. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GALR3 | up-regulates activity
binding
|
GNAI1 |
0.425 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256719 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | up-regulates activity
binding
|
Tubulin |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256538 |
|
|
in vitro |
|
pmid |
sentence |
10224115 |
G protein alpha subunits Gi1alpha, Gsalpha, and Goalpha are shown to activate the GTPase activity of tubulin, inhibit microtubule assembly, and accelerate microtubule dynamics. |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
F2R | up-regulates activity
binding
|
GNAI1 |
0.376 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256732 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | up-regulates activity
binding
|
TNFAIP8 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256491 |
|
|
Homo sapiens |
|
pmid |
sentence |
20607800 |
TNFAIP8: a new effector for Galpha(i) coupling to reduce cell death and induce cell transformation |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
OXTR | up-regulates activity
binding
|
GNAI1 |
0.429 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257065 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-270330 |
|
|
Homo sapiens |
|
pmid |
sentence |
30739093 |
OT binds to its cognate G protein–coupled receptor (OTR) and exerts diverse effects, including stimulation (Gs) or inhibition (Gi/o) of adenylyl cyclase, stimulation of potassium channel currents (Gi), and activation of phospholipase C (Gq). |
|
Publications: |
2 |
Organism: |
Homo Sapiens |
Pathways: | Oxytocin signaling |
+ |
OPRK1 | up-regulates activity
binding
|
GNAI1 |
0.452 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256710 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
F2RL1 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256895 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR1B | up-regulates activity
binding
|
GNAI1 |
0.443 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256720 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
DRD5 | up-regulates activity
binding
|
GNAI1 |
0.293 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257043 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CHRM3 | up-regulates activity
binding
|
GNAI1 |
0.282 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256739 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
S1PR3 | up-regulates
binding
|
GNAI1 |
0.47 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-70713 |
|
|
Homo sapiens |
|
pmid |
sentence |
10488065 |
Edg-3 and edg-5 couple not only to gibut also to gqand g13 |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
APLNR | up-regulates activity
binding
|
GNAI1 |
0.412 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256681 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR7 | up-regulates activity
binding
|
GNAI1 |
0.284 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257055 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR6 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257073 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
ADORA3 | up-regulates activity
binding
|
GNAI1 |
0.437 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256671 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | up-regulates activity
binding
|
CDC42 |
0.502 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256531 |
|
|
Mus musculus |
NIH-3T3 Cell |
pmid |
sentence |
11099498 |
These findings indicate that both G alpha(i) and G beta gamma stimulate Rac and Cdc42 pathways with lysophosphatidic acid-induced cell spreading on fibronectin |
|
Publications: |
1 |
Organism: |
Mus Musculus |
+ |
LPAR4 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257057 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MTNR1A | up-regulates activity
binding
|
GNAI1 |
0.453 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256706 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR2B | up-regulates activity
binding
|
GNAI1 |
0.28 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256743 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
S1PR2 | up-regulates
binding
|
GNAI1 |
0.451 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-70664 |
|
|
Homo sapiens |
|
pmid |
sentence |
10488065 |
Edg-3 and edg-5 couple not only to gibut also to gqand g13. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
PTAFR | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257061 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MC5R | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257070 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MRGPRX1 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257058 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MRGPRX2 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257059 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPR25 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-272501 |
|
|
Homo sapiens |
|
pmid |
sentence |
29727602 |
GPR25 is expressed in human memory T-cells and NK-cells and identified as a primary causal gene associated with autoimmune |Within the class A GPCR family, GPR25 shares a relatively high degree of amino acid sequence identity (29e34%) with vertebrate Apelin receptor (APLNR) diseases revealed by cis-eQTL mapping based on a genome-wide association study (GWAS). |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
S1PR3 | up-regulates activity
binding
|
GNAI1 |
0.47 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257062 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CCKBR | up-regulates activity
binding
|
GNAI1 |
0.277 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257037 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
NMBR | up-regulates activity
binding
|
GNAI1 |
0.271 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257047 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | up-regulates activity
binding
|
HCK |
0.33 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256528 |
|
|
in vitro |
|
pmid |
sentence |
11007482 |
Galphas and Galphai similarly modulate Hck, another member of Src-family tyrosine kinases. |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
LTB4R2 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256674 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
LPAR5 | up-regulates activity
binding
|
GNAI1 |
0.39 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256718 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MTNR1B | up-regulates activity
binding
|
GNAI1 |
0.448 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256707 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
P2RY14 | up-regulates activity
binding
|
GNAI1 |
0.376 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256723 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | up-regulates activity
binding
|
SRC |
0.463 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256526 |
|
|
in vitro |
|
pmid |
sentence |
11007482 |
Here we demonstrate that Galphas and Galphai, but neither Galphaq, Galpha12 nor Gbetay, directly stimulate the kinase activity of downregulated c-Src |
|
Publications: |
1 |
Organism: |
In Vitro |
+ |
FPR1 | up-regulates activity
binding
|
GNAI1 |
0.409 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256682 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR2A | up-regulates activity
binding
|
GNAI1 |
0.355 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256742 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
TBXA2R | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256744 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
F2RL3 | up-regulates
binding
|
GNAI1 |
0.357 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-151162 |
|
|
Homo sapiens |
|
pmid |
sentence |
17158345 |
Upon proteolysis, the newly formed n terminus acts as a tethered ligand that activates the receptor and initiates signaling cascades through multiple g proteins (galfaq, galfai, and galfa12/13) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HRH4 | up-regulates activity
binding
|
GNAI1 |
0.494 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256672 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CNR2 | up-regulates activity
binding
|
GNAI1 |
0.444 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256700 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
S1PR1 | up-regulates
|
GNAI1 |
0.482 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-54770 |
|
|
Homo sapiens |
|
pmid |
sentence |
9488656 |
Edg-1 is known to activate the mitogen-activated protein (map) kinase known as extracellular signal-regulated kinase 2 (erk-2) through pertussis toxin (ptx)sensitive giprotein |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
AVPR1B | up-regulates activity
binding
|
GNAI1 |
0.27 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257063 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR1D | up-regulates activity
binding
|
GNAI1 |
0.409 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256721 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR4 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257041 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
P2RY4 | up-regulates activity
binding
|
GNAI1 |
0.357 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256727 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
P2RY12 | up-regulates activity
binding
|
GNAI1 |
0.377 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256712 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GDP | down-regulates
chemical inhibition
|
GNAI1 |
0.8 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-88226 |
|
|
Homo sapiens |
|
pmid |
sentence |
12040175 |
Galfa subunits cycle between inactive (gdp-bound) and active (gtp-bound) states, and the lifetime of the active state is limited by gtp hydrolysis. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CHRM1 | up-regulates activity
binding
|
GNAI1 |
0.385 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256735 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPR119 | up-regulates activity
binding
|
GNAI1 |
0.281 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257040 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | up-regulates activity
binding
|
RAC1 |
0.447 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256530 |
|
|
Mus musculus |
NIH-3T3 Cell |
pmid |
sentence |
11099498 |
These findings indicate that both G alpha(i) and G beta gamma stimulate Rac and Cdc42 pathways with lysophosphatidic acid-induced cell spreading on fibronectin |
|
Publications: |
1 |
Organism: |
Mus Musculus |
+ |
LPAR3 | up-regulates activity
binding
|
GNAI1 |
0.434 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256890 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
SSTR3 | up-regulates activity
binding
|
GNAI1 |
0.561 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256677 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
TACR1 | up-regulates activity
binding
|
GNAI1 |
0.307 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257048 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HRH2 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257049 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
TACR2 | up-regulates activity
binding
|
GNAI1 |
0.261 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256736 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GNAI1 | down-regulates activity
binding
|
Adenylate_cyclase |
0.618 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-267853 |
|
|
Homo sapiens |
|
pmid |
sentence |
15922020 |
Activation of receptors coupled to inhibitory G proteins (Galpha i/o) has opposing consequences for cyclic AMP accumulation and the activity of cyclic AMP-dependent protein kinase, depending on the duration of stimulation. Acute activation inhibits the activity of adenylate cyclase, thereby attenuating cyclic AMP accumulation; in contrast, persistent activation of Galpha i/o-coupled receptors produces a paradoxical enhancement of adenylate cyclase activity, thus increasing cyclic AMP accumulation when the action of the inhibitory receptor is terminated. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Oxytocin signaling |
+ |
HTR2C | up-regulates activity
binding
|
GNAI1 |
0.298 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256734 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
OPRM1 | up-regulates activity
binding
|
GNAI1 |
0.585 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256711 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
CHRM2 | up-regulates activity
binding
|
GNAI1 |
0.49 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256685 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
S1PR2 | up-regulates activity
binding
|
GNAI1 |
0.451 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256728 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
PTGER3 | up-regulates
binding
|
GNAI1 |
0.427 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-88143 |
|
|
Homo sapiens |
|
pmid |
sentence |
12038972 |
Ep3 receptor signals are primarily involved in adenylyl cyclase via g(i) activation, and in ca(2+)-mobilization through g(beta)(gamma) from g(i) |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPCR | up-regulates
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-255009 |
|
|
Homo sapiens |
|
pmid |
sentence |
23994464 |
Activation of those receptors triggers the dissociation of the GPCR-specific Gα subunit from the shared Gβγ dimer and concomitant activation of various signal transduction pathways by both G-protein fragments |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
Pathways: | Neurotransmitters release |
+ |
MCHR2 | up-regulates activity
binding
|
GNAI1 |
0.409 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257067 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPR84 | up-regulates activity
binding
|
GNAI1 |
0.288 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256704 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
MC4R | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257069 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GRPR | up-regulates activity
binding
|
GNAI1 |
0.271 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257046 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GPR35 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256717 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
NPBWR1 | up-regulates activity
binding
|
GNAI1 |
0.409 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256675 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
HTR1F | up-regulates activity
binding
|
GNAI1 |
0.425 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256673 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
P2RY11 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257060 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
P2RY1 | up-regulates activity
binding
|
GNAI1 |
0.2 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-257072 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
AGTR1 | up-regulates activity
binding
|
GNAI1 |
0.252 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256738 |
|
|
Homo sapiens |
HEK-293A Cell |
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
GABA-B receptor | up-regulates activity
binding
|
GNAI1 |
0.406 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-264965 |
|
|
Homo sapiens |
|
pmid |
sentence |
30541966 |
GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |
+ |
ADRA2A | up-regulates activity
binding
|
GNAI1 |
0.535 |
Identifier |
Residue |
Sequence |
Organism |
Cell Line |
SIGNOR-256698 |
|
|
Homo sapiens |
|
pmid |
sentence |
31160049 |
Here we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique G alpha subunit C-termini. For each receptor, we probed chimeric G alpha subunit activation via a transforming growth factor-alpha (TGF alpha) shedding response in HEK293 cells lacking endogenous Gq/11- and G12/13- signaling. | We defined positive coupling if any member of the subfamily scored LogRAi ≥ -1 and negative coupling if all of the members scored LogRAi < -1 (Figure 3A-B). ROC analysis gives AUC = 0.78 (Figure S4A) when considering high-confidence known coupling data and suggested a threshold of LogRAi ≥ -1.0 for defining true couplings. | The score associated to this interaction has a LogRAi ≥ -1.0. |
|
Publications: |
1 |
Organism: |
Homo Sapiens |